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ARM 9 Instruction Set Architecture Introduction with Performance 
Perspective 

 
Joe-Ming Cheng, Ph.D. 

 
ARM-family processors are positioned among the leaders in key embedded applications. Many 
presentations and short lectures have already addressed the ARM’s applications and capabilities. In this 
introduction, we intend to discuss the ARM’s instruction set uniqueness from the performance prospective. 
This  introduction is also trying to follow the approaches established by two outstanding textbooks of David 
Patterson and John Hennessey [PetHen00] [HenPet02].  

1.0 ARM Instruction Set Architecture  
 
Processor instruction set architecture (ISA) choices have evolved from accumulator, stack, register-to-
memory, to register-register (load-store) organization. ARM 9 ISA is a load-store machine. ARM 9 ISA 
takes advantage of its smalle r set of registers (16 vs. many 32-register processors) to incorporate more 
direct controls and achieve high encoding density. ARM’s load or store multiple register instruction, for 
example , allows enlisting of all possible registers and conditional execution in one instruction.   
 
The Thumb mode instruction set is another exa mple of how ARM ISA facilitates higher encode density. 
Rather than compressing the code, Thumb-mode instructions are two 16-bit instructions packed in a 32-bit 
ARM-mode instruction space. The Thumb -mode instructions are a subset of ARM instructions. When 
executing in Thumb mode, a single 32-bit instruction fetch cycle effectively brings in two instructions. 
Thumb code reduces access bandwidth, code size, and improves instruction cache hit rate. 
 
Another way ARM achieves cycle time reduction is by using Harvard architecture. The architecture 
facilitates independent data and instruction buses. Consider an instruction mix with 30% load/store 
instructions. To ensure that the pipeline running nearly stall-free, 1.3 average memory accesses is needed 
for every instruction execution. The Harvard architecture allows the peak memory bandwidth to be 2.0 
instead of 1.0.  In addition, the independent data and address buses increase the percentage of sequential 
memory access. At present, ARM9 non-sequential access could take one or more extra cycles. 
 
This proceeding paper provides a brief overview of the following subjects with emphasis  on running-time 
performance: 

• ARM 922 programmer’s model – architect 
• Brief performance introduction on throughput, response time, and workload  
• ARM assembly code for C-Programming “if..then..else” and “while” loop; possible use of loop-

unrolling, strength reduction for faster execution 
• Built-in semaphore instruction, “SWP” and example of creating “Mutex” semaphore, and 

semaphore operations of “take” and “give” with SWP 
• ARM and Thumb mode transition   
• Interrupt handling and code example 
• Basic caching considerations  

 
1.1 ARM9 Programmer’s Model 
 
The ARM processor has a total of 37 registers in seven modes. User, System, and Fast Interrupt are ARM9 
processor modes. Each mode sees R0..R15 general-purpose registers, where R13, R14, and R14 serve as 
stack pointer, link register, and program counter. Some registers are shared among several modes. The 
current program status register (CPSR, not shown) and saved program status register (SPSR, not shown) 
retain arithmetic flags, Thumb /ARM mode, interrupt, and processor mode status information. Figure 1 
shows ARM’s instruction set encoding format. It includes generic RISC format; unique conditional 
executable field; and register list for individual register selection. 
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Table 1: ARM Processor Modes 

  Privileged Modes  
  Exception Mode 
User System Supervisor Abort Undefined Interrupt Fast 

Interrupt 
R0 R0 R0 R0 R0 R0 R0 
R1 R1 R1 R1 R1 R1 R1 
R2 R2 R2 R2 R2 R2 R2 
R3 R3 R3 R3 R3 R3 R3 
R4 R4 R4 R4 R4 R4 R4 
R5 R5 R5 R5 R5 R5 R5 
R6 R6 R6 R6 R6 R6 R6 
R7 R7 R7 R7 R7 R7 R7 
R8 R8 R8 R8 R8 R8 R8_fiq 
R9 R9 R9 R9 R9 R9 R9_fig 
R10 R10 R10 R10 R10 R10 R10_fig 
R11 R11 R11 R11 R11 R11 R11_fig 
R12 R12 R12 R12 R12 R12 R12_fig 
R13 – SP R13 – SP R13_SVC R13_abt R13_und R13_inq R13_fig 
R14 - Link R14 - Link R14_SVC R14_abt R14_und R14_inq R14_fig 
R15 - PC pc pc pc pc pc pc 
 
 

 
 
Figure 1 ARM’s instruction set encoding format includes generic RISC format; unique conditional 
executable field; and register list for individual register selection. 
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2.0 Performance and Workloads  
 
Response time and throughput are two primary performance measurements. Response Time, Figure 3, 
measures the time between input (stimulus) and output (response). Throughput, Figure 4, measures the 
number of inputs that can be processed per unit time (indication of system capacity). A system has many 
bottlenecks. Multiple test cases  or test suites, called workloads , are usually used to expose various 
bottlenecks and to gauge system performance.  
 
When performance hotspots are identified, the iterative tuning process will take place to enhance 
performance. Many texts addressed various application, OS, IO, and DB tunings through system 
configuration/setup, network topology, and code tuning. Performance tuning is not addressed here. In 
general, improving response time usually is harder than improving throughput.   
 
 

 
 
Figure 2 System with input and output 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 3 Response time vs. input rate                                       Figure 4 Throughput vs. input rate  
 
2.1 Benchmarks 
 
Benchmark suites are workloads defined publicly. The SPEC benchmark suites include many applications: 
Boolean function optimization, LISP interpretation, SPICE circuit simulation, and others. DLX instruction 
set includes recent instruction features from MIPS, Power PC, Precision Architecture, and SPARC. Five 
benchmark results for DLX are charted in Figure 5. The execution traces showed there were over 25% 
load/store executions, and over 17% of branch executions. An ISA (instruction set architecture) and 
machine organization usually need to adequately address these two aspects. 
 
2.2 Application Code Footprint 
 
Embedded applications usually have Read-Only or flash memory for storing program and data. The size of 
storage directly affects the cost. The run-time storage size is often referred to as footprint. An application 
program footprint may reside on SRAM, DRAM, and secondary storage. Frequent accesses to DRAM and 
secondary storage may result in severe performance degradation. SRAM, usually implemented with 6- 
transistors cell, has size limits. One-transistor DRAM or secondary storage could post access time issues 
and may need buffers (such as cache) for speeding up the effective access. ARM 920/922, 946 and other 
processor versions have cache provisions to improve effective access.  
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Figure 5 SPECinte94 DLX instruction mix for compress, eqntott, expresso, gcc, and li benchmarks 

3.0 C and C++ Programming Performance Implications 
 
The time required to execute an application is the product of the number of instructions (path length), the 
number of cycles per instruction, and the cycle time. Solutions for shorter execution time and smaller code 
size or foot print often present various challenges to embedded application developers. Many applications 
are now written in C/C++ or other high-level languages. To write execution-efficient code requires intimate 
awareness of path length (cost) of compiler generated codes on key structures  such as: functional call entry 
and exit, if-then-else, switch, for, while structures [IBM96]. OS kernel components and performance 
critical routine may need to be written in assembly code. Strict adherence to compiler vendor or Arm 
Procedure Call Interface standard is crucial to ensure the inter-operation between compiler-generated codes 
and the assembly codes created manually. 

3.1 Function or Procedure Call  
 
Function (or procedure) allows grouping of commonly used codes as a unit that can be used repeatedly. In 
many applications, over 90% of execution time dwells  on less than 10% functions. These so-called hot 
spots, usually ranked by 1st, 2nd, 3rd, based on overall execution time taken, may be identified by software 
tools. For the hot-spots identified, there are cases that the function entry and exit overheads present 
significant execution time, such as 20% to 80% of the execution.  
 
STMFD and LDMFD (and their variants) are single instructions that allow save and restore ARM registers. 
 
STMFD Store multiple registers & R14 (Link register, stores the return address)  to the stack 

(pointed by R13) on subroutine entry 
xmp: STMFD R13!,{<registers>,R14} 
 

LDMFD load (or restore) multiple registers and PC from the stack (pointed by R13) and 
returning to caller 
xmp: LDMFD R13!,{<registers>,PC} 

 
The instruction execution trace in Figure 6 shows a function that takes 25 cycles to enter and exit. The 
function body takes only 20 cycles to execute. 
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Instruction Execution Trace Cycles 
0x0001C1E8      BLX  0x1E88  
BRANCH: from 0x0001C1E8 --> 0x00001E88 due to PC CHANGE                                                 

2 

>> void GameStart::CheckMode(Mode &FastAttach) 
0x00001E88  STMFD  r13!,{r2-r6,r14}                                         
    STORE:  0x04002F58 = 0x00000004 
    STORE:  0x04002F5C = 0x00000030 
    STORE:  0x04002F60 = 0x040075E4 
    STORE:  0x04002F64 = 0x04007784 
    STORE:  0x04002F68 = 0x3010602C 
    STORE:  0x04002F6C = 0x0001C1ED 

10 

0x00001E8C      MOV  r4,r0                                                      1 
0x00001E90      MOV  r0,#0x80                                  1 
0x00001E94      MOV  r5,r1                                                      2 
              … other  codes 16 

                LDMFD  r13!,{r2-r6,pc} 15 

Figure 6 A procedure call execution trace 
 
It is not uncommon to see often used procedures where the body consumed less than 50% of the execution 
time. C++ codes often have many functions with a small body such as an accessor. These functions could 
be the sources of major overheads if used often. There are three basic remedies to mitigate the procedure 
overheads: 
 

1. Procedure in-lining 
2. Increase the size of procedure body 
3. Reduce the number of procedure calls  

 
C++ Accessor ensures better protection.  
Example: 
 
 class stack { // Prof. Ira Phol 

private: 
 char s[max_len]; 
  int top; 
 enum {EMPTY = -1, FULL = max_len-1}; 
public: 
 void rest(){top=EMPTY;} 
               void push(char c){top++; s[top]=c;} 
               char pop() { return (s[top--]); } 
               char top_of(){return s[top]; }  
               int get_top(){return top; } 
               boolean empty(){ return (boolean)(top == EMPTY); } 
               boolean full(){  return (Boolean)(top== FULL);  } 
} ; 

Figure 7 Accessor function code example 
 
Reducing procedure entry and exit overhead allows programs to run faster. Likewise, when control loop 
overhead becomes excessive, loop-unrolling may be considered to reduce overhead. Extended use of speed-
up techniques  often leads to a less desired programming style. A classical remedy to this problem is good 
documentation. 
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3.2 Indirection  
 
Indirection often incurs additional machine cycles. Pointer, array, and object local accesses involve 
indirection. Many high-level programming languages have provisions for handling programming life cycle. 
The uses of access control, virtual function, and inheritance involve indirections. In addition to extra 
machine cycles, indirection decreases the caching efficiency. The long cache miss memory access could 
introduce major performance degradation for systems with processor cache. 
  
Many developers oppose using C++ for writing embedded applications. Some projects use C++ object just 
for grouping functions and datum in a secured way, but not using the inheritance, polymorphism. There are 
large projects where the full embedded programs are written in assembly code. Code size, run-time 
footprint, response time, power, and cost are important factors of embedded system architecture.   

3.3 If then else  
 
Conditional branching statements in C including if-then-else or if-then-else-if is  often implemented using 
conditional branch machine instruction. Method#1 is a common structure used for assembly code 
generation. The “bnq”, branch not equal instruction, machine instruction is used for choosing the execution 
of action 1 or action 2. The 32-bit ARM instruction also supports the use of compilation structure 
Method#2. The “bnq” is not needed for this method. Rather, every instruction in action 1 body is an 
conditional-executed instruction . When path length (number of instructions) of action 1 is short, for 
example, four or less, Method#1 can run 7~10% faster than Method#1. 
 

Table 2                      Two compiler code generation choices    
C code if (x+y) ==0 .. action 1 

  else .. action 2 
Assembly code Method #1 
Typical code generation 

Assembly code generation method #2  
ARM Support:  

• add 
• compare 
• bnq b: 
• a: .. action 1 .. Branch  
• b: .. action 2 .. Branch 

• add 
• compare 
• (void) 
• a: .. action 1 .. Branch (conditional executed code) 
• b: .. action 2 .. Branch 

 
Comparison of method#1 and method #2  
 
Consider BNE instruction takes extra 4 cycles when branch is taken, for code generation Method#2, Figure 
8, and action 1 contains 4 or less instruction, it will save 0,1, or 2 cycles. In the branch not taken case, 
method#2 saves one execution cycle. For many control applications, an average of one instruction in 6 is a 
branch. The conditional-executed instruction allows 7~10% cycle reduction, which is significant. The 
SKIPs in the following trace are conditional-executed instruction turned NO OP. 
 
if..then..else Instruction Trace Cum. Time Inst. Time 

>> if(Lock.A==MyTask.Key1){ 
   0x00001EA0      LDR  r0,[r5,#4]                                                

5.0ns 5.0ns 

   0x00001EA4      LDR  r2,[r4,#0x160]                                            10.0ns 5.0ns 

   LOAD:   RTOS.CurrentTask(@0x04005714) = 0x02 
   0x00001EA8      CMP  r0,r2                                                      

15.0ns 5.0ns 



ESC-470, Joe-Ming Cheng Page 7 1/11/2004 

>> Lock.A.Count++; 
    SKIP:   0x00001EAC      LDREQB  r0,[r5,#5] 
    SKIP:   0x00001EB0      ADDEQ  r0,r0,#1 
    SKIP:   0x00001EB4      STREQB  r0,[r5,#5] 
    SKIP:   0x00001EB8      BEQ  0x1f90 

    

>> else if(Lock.A==OsTask){ 
    0x00001EBC      CMP  r0,#0xff                                                   

40.0ns 5.0ns 

 
Figure 8 “if..then..else” compile Method# 2 code trace 
 
Most ARM instructions can be conditionally executed 
Figure 9 shows the conditional-executed instruction format. The LDREQD and LDRNE instructions listed 
below describe the conditions for the instructions to be executed. 
 

• LDREQD       // LDR{ }D is executed if “Z” is set, equal 
• LDRNE          // LRR{ }D is executed if “Z not set”, not equal. 

 

 
 
Figure 9 Example of coded conditional field 
 
High Instruction Encoding Density 
 

31 28 27 26 25 24 23 22 21 20 19 16 15 0
Cond 1 0 0 P U 1 0 0Rn register list

Cond The condition that allows the instruction to  be executed
P,U addressing mode

Rn Base register used; xmp: R13, stack 
Register List each register can be independently selected  

 
Figure 10 Instruction format contains conditional field and register selection list 
 
The ARM load/store multiple format, Figure 10, exemplifies high instruction encoding. The bit 15..0 field 
allows any combination of registers to be selected. A processor with large number of registers can not 
encode the register-selection field this way. Then, when loading and storing non-contiguous registers, 
multiple instructions are needed to load or store each register. The ARM load/store multiple instructions 
also have the conditional execution field. Smart compiler can use this feature to generate compact fast-
running code.  

3.4 while loop  
In general, codes generated for “while (flag.x != 0) action 1” are: 
 
 a: cmp r4,#0  // compare 

31 30 29 2 8  7 6 5 4 3 2 1 0
cond

Condition
0 0 0 0 EQ Equal Z set
0 0 0 1 NE Not equal Z clear
0 0 1 0 CS/HS Carry set C set
0 0 1 1 CC/LO Carry clear C clear
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    bne b:  
       .. action 1 ..  branch a: // while core code 
b:  

 

3.5 Thumb Mode and Transition between ARM and Thumb Mode (51) 
 
The ARM Thumb -mode instructions are encoded in16 bits. A single 32-bit instruction cycle fetches two 
Thumb instructions. Code segments generated with Thumb  mode instructions have smaller footprints, 
require less instruction bandwidth, and could improve caching and pipeline efficiencies. Transition from 
ARM to Thumb mode execution, in some cases, requires additional instructions (Figure 11). These extra 
instructions are sources of performance and footprint overheads. 
 
Address Instruction Comment 
 … //prepare R2 for target address || 0x1 
0x00011544 BLX   R2 //Branch, Link, and exchange 
C: Routine()   
0x00007554 
CRoutine: 
 

push      {R4,R5,R7,R14} 
  0x04003CE0 = 0x04004074 
  0x04003CE4 = 0x04005074 
  0x04003CE8 = 0x00000000 
  0x04003CEC = 0x00011548 

// Thumb mode operation 
// push R4 
// push R5 
// push R7 
// push R14  

0x00007556 MOV  r4,r0 // Thumb mode operation 
0x00007558 MOV  r0,#5 // Thumb mode operation 
 
Figure 11 Instruction execution trace of ARM to Thumb mode transition 
 

3.6 Build-in Semaphore Support and RTOS 
 
Atomic operation is a collection of execution steps executed as a single indivisible unit (without 
interruption). Semaphore is a condition of events that a task (process) is waiting for. Semaphore is usually 
used to ensure proper serialization of shared resource. SWP is an ARM9 built-in Atomic instruction. SWP 
can be used to construct mutual-exclusion (mutex) types of Semaphore.  
 
For many applications, the RTOS (real-time operating system) is ported from one to another processor. 
The Atomic operation is emulated through disabling all interrupts instead of using processor built-in 
Atomic instruction. This approach is general-purpose, but less efficient and is more restricted. Developers 
should take the advantage of using built-in Atomic or Semaphore instruction. 
 
Figure 12 shows a “Mutex” Semaphore implementation based on the SWP instruction (source: ARM 
Architecture Reference Manual [Seal00]). The semaphore is a memory location pointed by R0. The SWP 
instruction allows the exchange of a “looking code = -1” in R2 with memory[R0] in one atomic operation. 
If the semaphore is currently owned by a process ID, the semaphore is restored. Or, if another process is 
looking at the semaphore, the process is entering the wait mode and will try to “look” again at a later point. 
In case the semaphore is “free”, the process puts its own ID on the semaphore and assumes the ownership. 
When the process completes its task, it then needs to relinquish the semaphore (set ID = 0).  
 
Embedded systems usually have basic to extended capabilities of servicing real-time events. Complete real-
time OSs, available for purchase, include not only OS kernel, threading, semaphore capabilities but also 
include application domain functions such as drivers for a complete network protocol stack.  
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ARM Semaphore Instruction Mutex Example (ARM Arch. Ref. Manual)
on entry R0 Holds the address of semaphore

R1 Holds the Process ID requesting the lock

mvn R2, #0 ; load the looking value of -1 in R2

spinin swp R3, R2, [R0] ; m[R0] ->R3, m[R0]<-R2
cmn R3,#1 ; anyone else tying to "look"?

.... OS call to sleep process ; remember the SKIP when not equal

beq spinin ; yes, wait for my turn

cmp R3, #0 ; Is lock free
strne R3, [R0] ; no, restore the lock
.... OS call to sleep process ; remember the SKIP when not equal
bne spinin

str R1,[R0] ; assume lock ownership with own ID

... insert your critical here

spinout swp R3, R2, [R0] ; look at the lock
cmn R3, #1 ; anyone is looking?
.... OS call to sleep process ; remember the SKIP when not equal
beq spinout

cmp R3, R1 ; check if I am the owner
bne SemaphoreCorruptedErrorHandler
mov R2, #0
str R2, [R0] ; free the lock  

 
Figure 12 Mutex lock implementation with ARM9 built-in SWP instruction 
 
Basic OS core can be built on interrupt services and semaphore functions. When an exception (event) 
occurs, the execution is forced to start from a fixed memory address corresponding to the type of exception. 
Figure 13 shows an ARM FIQ (fast interrupt request) interrupt service handler. 
  

0x00012C00 .......... //FIQ occurred

0x0000001C B 0x1b8 //FIQ  Vector, Critical Interrupt Handler

0x000001B8 STMFD r13!,{r0-r3,r12,r14}            //Critical Interrupt Handler
store: 0x04003D18 = 0x00001410 //r0 saved in stack
store: 0x04003D1C = 0x00000000 //r1 saved in stack
store: 0x04003D20 = 0x00000000 //r2 saved in stack
store: 0x04003D24 = 0x00000000 //r3 saved in stack
store: 0x04003D28 = 0xFFFFFFFF //r12 saved in stack
store: 0x04003D2C = 0x00012C0C //Return Address + 4

Poll interrupt causes

LDR R0, 0x224 //Load Argument
BL 0x05b4 //Branch into interrupt Service routine

0x00005CB4                                  STMFD                     r13!,{r4-r6,r14}                           //Interrupt Service Routine

..........
LDMFD                       r13!,{r4-r6,r14}                           

0x000001C4                             LDMFD                       r13!,{r0-r3,r12,r14}            
 
Figure 13 A fast interrupt service routine outline 
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4.0 Caching and Basic Hardware Consideration  
 
Large amounts of high-speed memory would simplify developers’ tasks. However, power and cooling 
constraints have been issues  for mainframe, workstation platforms , and even so for most embedded 
applications. Memory hierarchy takes advantage of spatial and temporal memory accessing localities and 
cost/performance of memory technologies. Many CDC models and RCA1800 employed high-speed 
memory pages along with slower, but cheaper, memory pages. Programmers need to be speed-location 
aware and to move speed-critical codes to fast memory pages. Alternatively, a more common choice is the 
use of higher-speed buffer called cache. Cache removes the need of speed-location aware and code overlay.  
 
Modern processor caching structures usually consists of three functional units: instruction/data caching, 
prefetch buffer, and miss/victim caching [Jouppi90]. Choices of line size and associativity (for caching unit) 
are usually based on the workload expected. The SPICE bench mark cache simulation results , Figure 14, 
showed the access overhead (0% means no cache miss) vs. the 1,2,4-way associativity and 16..256byte line 
sizes. The “A4” denotes the memory access is 4X the processor clock time. B0, B4, and B8 stand for 
prefetch buffer of line size of 0, 4, and 8. In this chart the optimal cache design point choice is: 4-way set 
associative, 32-byte line size, and a prefetch buffer of 8 lines 
 
It is indicated that the ARM9TDMI core is not generally available. The necessary cache signal interfaces 
are not directly accessible. The developer needs to consult ARM or IC Foundries for available cache 
configurations. The ARM920/922 core supports 64-way associativity [Furber00]. The high degree of 
associativity reduces conflict miss, which makes the use of miss/victim cache unnecessary. The high-
degree cache associativity performs well for multi-threading or multi-tasking applications. In general, the 
temporal and spatial localities of data caching are not as good as instruction caching. The developer could 
resort to a larger data cache or devis e intelligent prefetch algorithms. 
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Figure 14 Spice benchmark cache access overhead on 45 cache organization design points  
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Summary 
 
In summary, ARM instruction set provides high functional density for control and other key applications. 
Thumb mode instruction allows execution footprint size  reduction with slight performance overhead. 
Successful development of embedded application often requires establishment of clear performance targets 
and workloads at the start. For codes on the response critical paths, the developer should be aware of the 
machine code generated by the compiler and be prepared to write fast assembly or C codes if necessary. 
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