
ESC-470, Joe-Ming Cheng Page 1 1/11/2004

ARM 9 Instruction Set Architecture Introduction with Performance
Perspective

Joe-Ming Cheng, Ph.D.

ARM-family processors are positioned among the leaders in key embedded applications. Many
presentations and short lectures have already addressed the ARM’s applications and capabilities. In this
introduction, we intend to discuss the ARM’s instruction set uniqueness from the performance prospective.
This introduction is also trying to follow the approaches established by two outstanding textbooks of David
Patterson and John Hennessey [PetHen00] [HenPet02].

1.0 ARM Instruction Set Architecture

Processor instruction set architecture (ISA) choices have evolved from accumulator, stack, register-to-
memory, to register-register (load-store) organization. ARM 9 ISA is a load-store machine. ARM 9 ISA
takes advantage of its smalle r set of registers (16 vs. many 32-register processors) to incorporate more
direct controls and achieve high encoding density. ARM’s load or store multiple register instruction, for
example , allows enlisting of all possible registers and conditional execution in one instruction.

The Thumb mode instruction set is another exa mple of how ARM ISA facilitates higher encode density.
Rather than compressing the code, Thumb-mode instructions are two 16-bit instructions packed in a 32-bit
ARM-mode instruction space. The Thumb -mode instructions are a subset of ARM instructions. When
executing in Thumb mode, a single 32-bit instruction fetch cycle effectively brings in two instructions.
Thumb code reduces access bandwidth, code size, and improves instruction cache hit rate.

Another way ARM achieves cycle time reduction is by using Harvard architecture. The architecture
facilitates independent data and instruction buses. Consider an instruction mix with 30% load/store
instructions. To ensure that the pipeline running nearly stall-free, 1.3 average memory accesses is needed
for every instruction execution. The Harvard architecture allows the peak memory bandwidth to be 2.0
instead of 1.0. In addition, the independent data and address buses increase the percentage of sequential
memory access. At present, ARM9 non-sequential access could take one or more extra cycles.

This proceeding paper provides a brief overview of the following subjects with emphasis on running-time
performance:

• ARM 922 programmer’s model – architect
• Brief performance introduction on throughput, response time, and workload
• ARM assembly code for C-Programming “if..then..else” and “while” loop; possible use of loop-

unrolling, strength reduction for faster execution
• Built-in semaphore instruction, “SWP” and example of creating “Mutex” semaphore, and

semaphore operations of “take” and “give” with SWP
• ARM and Thumb mode transition
• Interrupt handling and code example
• Basic caching considerations

1.1 ARM9 Programmer’s Model

The ARM processor has a total of 37 registers in seven modes. User, System, and Fast Interrupt are ARM9
processor modes. Each mode sees R0..R15 general-purpose registers, where R13, R14, and R14 serve as
stack pointer, link register, and program counter. Some registers are shared among several modes. The
current program status register (CPSR, not shown) and saved program status register (SPSR, not shown)
retain arithmetic flags, Thumb /ARM mode, interrupt, and processor mode status information. Figure 1
shows ARM’s instruction set encoding format. It includes generic RISC format; unique conditional
executable field; and register list for individual register selection.

ESC-470, Joe-Ming Cheng Page 2 1/11/2004

Table 1: ARM Processor Modes

 Privileged Modes
 Exception Mode
User System Supervisor Abort Undefined Interrupt Fast

Interrupt
R0 R0 R0 R0 R0 R0 R0
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8 R8_fiq
R9 R9 R9 R9 R9 R9 R9_fig
R10 R10 R10 R10 R10 R10 R10_fig
R11 R11 R11 R11 R11 R11 R11_fig
R12 R12 R12 R12 R12 R12 R12_fig
R13 – SP R13 – SP R13_SVC R13_abt R13_und R13_inq R13_fig
R14 - Link R14 - Link R14_SVC R14_abt R14_und R14_inq R14_fig
R15 - PC pc pc pc pc pc pc

Figure 1 ARM’s instruction set encoding format includes generic RISC format; unique conditional
executable field; and register list for individual register selection.

generic

unique

unique

ESC-470, Joe-Ming Cheng Page 3 1/11/2004

2.0 Performance and Workloads

Response time and throughput are two primary performance measurements. Response Time, Figure 3,
measures the time between input (stimulus) and output (response). Throughput, Figure 4, measures the
number of inputs that can be processed per unit time (indication of system capacity). A system has many
bottlenecks. Multiple test cases or test suites, called workloads , are usually used to expose various
bottlenecks and to gauge system performance.

When performance hotspots are identified, the iterative tuning process will take place to enhance
performance. Many texts addressed various application, OS, IO, and DB tunings through system
configuration/setup, network topology, and code tuning. Performance tuning is not addressed here. In
general, improving response time usually is harder than improving throughput.

Figure 2 System with input and output

 Figure 3 Response time vs. input rate Figure 4 Throughput vs. input rate

2.1 Benchmarks

Benchmark suites are workloads defined publicly. The SPEC benchmark suites include many applications:
Boolean function optimization, LISP interpretation, SPICE circuit simulation, and others. DLX instruction
set includes recent instruction features from MIPS, Power PC, Precision Architecture, and SPARC. Five
benchmark results for DLX are charted in Figure 5. The execution traces showed there were over 25%
load/store executions, and over 17% of branch executions. An ISA (instruction set architecture) and
machine organization usually need to adequately address these two aspects.

2.2 Application Code Footprint

Embedded applications usually have Read-Only or flash memory for storing program and data. The size of
storage directly affects the cost. The run-time storage size is often referred to as footprint. An application
program footprint may reside on SRAM, DRAM, and secondary storage. Frequent accesses to DRAM and
secondary storage may result in severe performance degradation. SRAM, usually implemented with 6-
transistors cell, has size limits. One-transistor DRAM or secondary storage could post access time issues
and may need buffers (such as cache) for speeding up the effective access. ARM 920/922, 946 and other
processor versions have cache provisions to improve effective access.

0 5 10 15 20 25

Input Rate

0

5

10

15

20

O
ut

pu
t R

es
po

ns
e

T
im

e

Perfect
Expected
Reality

Response Time

0 5 10 15 20

Input Rate

0

5

10

15

20

O
u

tp
u

t T
h

ro
u

g
h

p
u

t

Perfect Reality

Throuput vs. Input Rate

ESC-470, Joe-Ming Cheng Page 4 1/11/2004

Figure 5 SPECinte94 DLX instruction mix for compress, eqntott, expresso, gcc, and li benchmarks

3.0 C and C++ Programming Performance Implications

The time required to execute an application is the product of the number of instructions (path length), the
number of cycles per instruction, and the cycle time. Solutions for shorter execution time and smaller code
size or foot print often present various challenges to embedded application developers. Many applications
are now written in C/C++ or other high-level languages. To write execution-efficient code requires intimate
awareness of path length (cost) of compiler generated codes on key structures such as: functional call entry
and exit, if-then-else, switch, for, while structures [IBM96]. OS kernel components and performance
critical routine may need to be written in assembly code. Strict adherence to compiler vendor or Arm
Procedure Call Interface standard is crucial to ensure the inter-operation between compiler-generated codes
and the assembly codes created manually.

3.1 Function or Procedure Call

Function (or procedure) allows grouping of commonly used codes as a unit that can be used repeatedly. In
many applications, over 90% of execution time dwells on less than 10% functions. These so-called hot
spots, usually ranked by 1st, 2nd, 3rd, based on overall execution time taken, may be identified by software
tools. For the hot-spots identified, there are cases that the function entry and exit overheads present
significant execution time, such as 20% to 80% of the execution.

STMFD and LDMFD (and their variants) are single instructions that allow save and restore ARM registers.

STMFD Store multiple registers & R14 (Link register, stores the return address) to the stack

(pointed by R13) on subroutine entry
xmp: STMFD R13!,{<registers>,R14}

LDMFD load (or restore) multiple registers and PC from the stack (pointed by R13) and
returning to caller
xmp: LDMFD R13!,{<registers>,PC}

The instruction execution trace in Figure 6 shows a function that takes 25 cycles to enter and exit. The
function body takes only 20 cycles to execute.

load
store

add
sub

mul/div
compare

load imm
cond jump

jump
call

others

Instruction Types

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

compress
eqntott
expresso
gcc
li

 SPECint93 on DLX Instruction Mix (PH90)

ESC-470, Joe-Ming Cheng Page 5 1/11/2004

Instruction Execution Trace Cycles
0x0001C1E8 BLX 0x1E88
BRANCH: from 0x0001C1E8 --> 0x00001E88 due to PC CHANGE

2

>> void GameStart::CheckMode(Mode &FastAttach)
0x00001E88 STMFD r13!,{r2-r6,r14}
 STORE: 0x04002F58 = 0x00000004
 STORE: 0x04002F5C = 0x00000030
 STORE: 0x04002F60 = 0x040075E4
 STORE: 0x04002F64 = 0x04007784
 STORE: 0x04002F68 = 0x3010602C
 STORE: 0x04002F6C = 0x0001C1ED

10

0x00001E8C MOV r4,r0 1
0x00001E90 MOV r0,#0x80 1
0x00001E94 MOV r5,r1 2
 … other codes 16

 LDMFD r13!,{r2-r6,pc} 15

Figure 6 A procedure call execution trace

It is not uncommon to see often used procedures where the body consumed less than 50% of the execution
time. C++ codes often have many functions with a small body such as an accessor. These functions could
be the sources of major overheads if used often. There are three basic remedies to mitigate the procedure
overheads:

1. Procedure in-lining
2. Increase the size of procedure body
3. Reduce the number of procedure calls

C++ Accessor ensures better protection.
Example:

 class stack { // Prof. Ira Phol

private:
 char s[max_len];
 int top;
 enum {EMPTY = -1, FULL = max_len-1};
public:
 void rest(){top=EMPTY;}
 void push(char c){top++; s[top]=c;}
 char pop() { return (s[top--]); }
 char top_of(){return s[top]; }
 int get_top(){return top; }
 boolean empty(){ return (boolean)(top == EMPTY); }
 boolean full(){ return (Boolean)(top== FULL); }
} ;

Figure 7 Accessor function code example

Reducing procedure entry and exit overhead allows programs to run faster. Likewise, when control loop
overhead becomes excessive, loop-unrolling may be considered to reduce overhead. Extended use of speed-
up techniques often leads to a less desired programming style. A classical remedy to this problem is good
documentation.

ESC-470, Joe-Ming Cheng Page 6 1/11/2004

3.2 Indirection

Indirection often incurs additional machine cycles. Pointer, array, and object local accesses involve
indirection. Many high-level programming languages have provisions for handling programming life cycle.
The uses of access control, virtual function, and inheritance involve indirections. In addition to extra
machine cycles, indirection decreases the caching efficiency. The long cache miss memory access could
introduce major performance degradation for systems with processor cache.

Many developers oppose using C++ for writing embedded applications. Some projects use C++ object just
for grouping functions and datum in a secured way, but not using the inheritance, polymorphism. There are
large projects where the full embedded programs are written in assembly code. Code size, run-time
footprint, response time, power, and cost are important factors of embedded system architecture.

3.3 If then else

Conditional branching statements in C including if-then-else or if-then-else-if is often implemented using
conditional branch machine instruction. Method#1 is a common structure used for assembly code
generation. The “bnq”, branch not equal instruction, machine instruction is used for choosing the execution
of action 1 or action 2. The 32-bit ARM instruction also supports the use of compilation structure
Method#2. The “bnq” is not needed for this method. Rather, every instruction in action 1 body is an
conditional-executed instruction . When path length (number of instructions) of action 1 is short, for
example, four or less, Method#1 can run 7~10% faster than Method#1.

Table 2 Two compiler code generation choices
C code if (x+y) ==0 .. action 1

 else .. action 2
Assembly code Method #1
Typical code generation

Assembly code generation method #2
ARM Support:

• add
• compare
• bnq b:
• a: .. action 1 .. Branch
• b: .. action 2 .. Branch

• add
• compare
• (void)
• a: .. action 1 .. Branch (conditional executed code)
• b: .. action 2 .. Branch

Comparison of method#1 and method #2

Consider BNE instruction takes extra 4 cycles when branch is taken, for code generation Method#2, Figure
8, and action 1 contains 4 or less instruction, it will save 0,1, or 2 cycles. In the branch not taken case,
method#2 saves one execution cycle. For many control applications, an average of one instruction in 6 is a
branch. The conditional-executed instruction allows 7~10% cycle reduction, which is significant. The
SKIPs in the following trace are conditional-executed instruction turned NO OP.

if..then..else Instruction Trace Cum. Time Inst. Time

>> if(Lock.A==MyTask.Key1){
 0x00001EA0 LDR r0,[r5,#4]

5.0ns 5.0ns

 0x00001EA4 LDR r2,[r4,#0x160] 10.0ns 5.0ns

 LOAD: RTOS.CurrentTask(@0x04005714) = 0x02
 0x00001EA8 CMP r0,r2

15.0ns 5.0ns

ESC-470, Joe-Ming Cheng Page 7 1/11/2004

>> Lock.A.Count++;
 SKIP: 0x00001EAC LDREQB r0,[r5,#5]
 SKIP: 0x00001EB0 ADDEQ r0,r0,#1
 SKIP: 0x00001EB4 STREQB r0,[r5,#5]
 SKIP: 0x00001EB8 BEQ 0x1f90

>> else if(Lock.A==OsTask){
 0x00001EBC CMP r0,#0xff

40.0ns 5.0ns

Figure 8 “if..then..else” compile Method# 2 code trace

Most ARM instructions can be conditionally executed
Figure 9 shows the conditional-executed instruction format. The LDREQD and LDRNE instructions listed
below describe the conditions for the instructions to be executed.

• LDREQD // LDR{ }D is executed if “Z” is set, equal
• LDRNE // LRR{ }D is executed if “Z not set”, not equal.

Figure 9 Example of coded conditional field

High Instruction Encoding Density

31 28 27 26 25 24 23 22 21 20 19 16 15 0
Cond 1 0 0 P U 1 0 0Rn register list

Cond The condition that allows the instruction to be executed
P,U addressing mode

Rn Base register used; xmp: R13, stack
Register List each register can be independently selected

Figure 10 Instruction format contains conditional field and register selection list

The ARM load/store multiple format, Figure 10, exemplifies high instruction encoding. The bit 15..0 field
allows any combination of registers to be selected. A processor with large number of registers can not
encode the register-selection field this way. Then, when loading and storing non-contiguous registers,
multiple instructions are needed to load or store each register. The ARM load/store multiple instructions
also have the conditional execution field. Smart compiler can use this feature to generate compact fast-
running code.

3.4 while loop
In general, codes generated for “while (flag.x != 0) action 1” are:

 a: cmp r4,#0 // compare

31 30 29 2 8 7 6 5 4 3 2 1 0
cond

Condition
0 0 0 0 EQ Equal Z set
0 0 0 1 NE Not equal Z clear
0 0 1 0 CS/HS Carry set C set
0 0 1 1 CC/LO Carry clear C clear

ESC-470, Joe-Ming Cheng Page 8 1/11/2004

 bne b:
 .. action 1 .. branch a: // while core code
b:

3.5 Thumb Mode and Transition between ARM and Thumb Mode (51)

The ARM Thumb -mode instructions are encoded in16 bits. A single 32-bit instruction cycle fetches two
Thumb instructions. Code segments generated with Thumb mode instructions have smaller footprints,
require less instruction bandwidth, and could improve caching and pipeline efficiencies. Transition from
ARM to Thumb mode execution, in some cases, requires additional instructions (Figure 11). These extra
instructions are sources of performance and footprint overheads.

Address Instruction Comment
 … //prepare R2 for target address || 0x1
0x00011544 BLX R2 //Branch, Link, and exchange
C: Routine()
0x00007554
CRoutine:

push {R4,R5,R7,R14}
 0x04003CE0 = 0x04004074
 0x04003CE4 = 0x04005074
 0x04003CE8 = 0x00000000
 0x04003CEC = 0x00011548

// Thumb mode operation
// push R4
// push R5
// push R7
// push R14

0x00007556 MOV r4,r0 // Thumb mode operation
0x00007558 MOV r0,#5 // Thumb mode operation

Figure 11 Instruction execution trace of ARM to Thumb mode transition

3.6 Build-in Semaphore Support and RTOS

Atomic operation is a collection of execution steps executed as a single indivisible unit (without
interruption). Semaphore is a condition of events that a task (process) is waiting for. Semaphore is usually
used to ensure proper serialization of shared resource. SWP is an ARM9 built-in Atomic instruction. SWP
can be used to construct mutual-exclusion (mutex) types of Semaphore.

For many applications, the RTOS (real-time operating system) is ported from one to another processor.
The Atomic operation is emulated through disabling all interrupts instead of using processor built-in
Atomic instruction. This approach is general-purpose, but less efficient and is more restricted. Developers
should take the advantage of using built-in Atomic or Semaphore instruction.

Figure 12 shows a “Mutex” Semaphore implementation based on the SWP instruction (source: ARM
Architecture Reference Manual [Seal00]). The semaphore is a memory location pointed by R0. The SWP
instruction allows the exchange of a “looking code = -1” in R2 with memory[R0] in one atomic operation.
If the semaphore is currently owned by a process ID, the semaphore is restored. Or, if another process is
looking at the semaphore, the process is entering the wait mode and will try to “look” again at a later point.
In case the semaphore is “free”, the process puts its own ID on the semaphore and assumes the ownership.
When the process completes its task, it then needs to relinquish the semaphore (set ID = 0).

Embedded systems usually have basic to extended capabilities of servicing real-time events. Complete real-
time OSs, available for purchase, include not only OS kernel, threading, semaphore capabilities but also
include application domain functions such as drivers for a complete network protocol stack.

ESC-470, Joe-Ming Cheng Page 9 1/11/2004

ARM Semaphore Instruction Mutex Example (ARM Arch. Ref. Manual)
on entry R0 Holds the address of semaphore

R1 Holds the Process ID requesting the lock

mvn R2, #0 ; load the looking value of -1 in R2

spinin swp R3, R2, [R0] ; m[R0] ->R3, m[R0]<-R2
cmn R3,#1 ; anyone else tying to "look"?

.... OS call to sleep process ; remember the SKIP when not equal

beq spinin ; yes, wait for my turn

cmp R3, #0 ; Is lock free
strne R3, [R0] ; no, restore the lock
.... OS call to sleep process ; remember the SKIP when not equal
bne spinin

str R1,[R0] ; assume lock ownership with own ID

... insert your critical here

spinout swp R3, R2, [R0] ; look at the lock
cmn R3, #1 ; anyone is looking?
.... OS call to sleep process ; remember the SKIP when not equal
beq spinout

cmp R3, R1 ; check if I am the owner
bne SemaphoreCorruptedErrorHandler
mov R2, #0
str R2, [R0] ; free the lock

Figure 12 Mutex lock implementation with ARM9 built-in SWP instruction

Basic OS core can be built on interrupt services and semaphore functions. When an exception (event)
occurs, the execution is forced to start from a fixed memory address corresponding to the type of exception.
Figure 13 shows an ARM FIQ (fast interrupt request) interrupt service handler.

0x00012C00 //FIQ occurred

0x0000001C B 0x1b8 //FIQ Vector, Critical Interrupt Handler

0x000001B8 STMFD r13!,{r0-r3,r12,r14} //Critical Interrupt Handler
store: 0x04003D18 = 0x00001410 //r0 saved in stack
store: 0x04003D1C = 0x00000000 //r1 saved in stack
store: 0x04003D20 = 0x00000000 //r2 saved in stack
store: 0x04003D24 = 0x00000000 //r3 saved in stack
store: 0x04003D28 = 0xFFFFFFFF //r12 saved in stack
store: 0x04003D2C = 0x00012C0C //Return Address + 4

Poll interrupt causes

LDR R0, 0x224 //Load Argument
BL 0x05b4 //Branch into interrupt Service routine

0x00005CB4 STMFD r13!,{r4-r6,r14} //Interrupt Service Routine

..........
LDMFD r13!,{r4-r6,r14}

0x000001C4 LDMFD r13!,{r0-r3,r12,r14}

Figure 13 A fast interrupt service routine outline

ESC-470, Joe-Ming Cheng Page 10 1/11/2004

4.0 Caching and Basic Hardware Consideration

Large amounts of high-speed memory would simplify developers’ tasks. However, power and cooling
constraints have been issues for mainframe, workstation platforms , and even so for most embedded
applications. Memory hierarchy takes advantage of spatial and temporal memory accessing localities and
cost/performance of memory technologies. Many CDC models and RCA1800 employed high-speed
memory pages along with slower, but cheaper, memory pages. Programmers need to be speed-location
aware and to move speed-critical codes to fast memory pages. Alternatively, a more common choice is the
use of higher-speed buffer called cache. Cache removes the need of speed-location aware and code overlay.

Modern processor caching structures usually consists of three functional units: instruction/data caching,
prefetch buffer, and miss/victim caching [Jouppi90]. Choices of line size and associativity (for caching unit)
are usually based on the workload expected. The SPICE bench mark cache simulation results , Figure 14,
showed the access overhead (0% means no cache miss) vs. the 1,2,4-way associativity and 16..256byte line
sizes. The “A4” denotes the memory access is 4X the processor clock time. B0, B4, and B8 stand for
prefetch buffer of line size of 0, 4, and 8. In this chart the optimal cache design point choice is: 4-way set
associative, 32-byte line size, and a prefetch buffer of 8 lines

It is indicated that the ARM9TDMI core is not generally available. The necessary cache signal interfaces
are not directly accessible. The developer needs to consult ARM or IC Foundries for available cache
configurations. The ARM920/922 core supports 64-way associativity [Furber00]. The high degree of
associativity reduces conflict miss, which makes the use of miss/victim cache unnecessary. The high-
degree cache associativity performs well for multi-threading or multi-tasking applications. In general, the
temporal and spatial localities of data caching are not as good as instruction caching. The developer could
resort to a larger data cache or devis e intelligent prefetch algorithms.

1-
16

1-
32

1-
64

1-
12

8

1-
25

6

2-
16

2-
32

2-
64

2-
12

8

2-
25

6

4-
16

4-
32

4-
64

4-
12

8

4-
25

6

Associativity and Line Size (Bytes)

0

0.05

0.1

0.15

A
cc

es
s

O
ve

rh
ea

d
 o

ve
r

10
0%

 C
ac

h
e

H
it

A4B0

A4B4

A4B8

SP2G618K, Instructoion Cache = 8 KB
A4, 4XAccess; B, Prefetch Buffer Size

Figure 14 Spice benchmark cache access overhead on 45 cache organization design points

ESC-470, Joe-Ming Cheng Page 11 1/11/2004

Summary

In summary, ARM instruction set provides high functional density for control and other key applications.
Thumb mode instruction allows execution footprint size reduction with slight performance overhead.
Successful development of embedded application often requires establishment of clear performance targets
and workloads at the start. For codes on the response critical paths, the developer should be aware of the
machine code generated by the compiler and be prepared to write fast assembly or C codes if necessary.

References

Furber00 Steve Furber, “ARM System-on-chip Architecture”, ISBN 0-201-67519-6, Addison-

Wesley
HenPet02 John L. Hennessy and David A. Patterson, “Computer Architecture - A Quantitative

Approach”, Morgan Kaufmann, SF, CA
IBM96 Hoxey et al edited, “The PowerPC Compiler Writer’s Guide”, ISBN 0-9649654-0-2,

Warthman Associates
Jouppi90 Norm P. Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers ”, IEEE,
1990

PetHen00 David A. Patterson and John L. Hennessy ,“Computer Organization and Design”, Morgan
Kaufmann, SF, CA

Seal00 David Seal, “ARM Architecture Reference Manual”, ISBN 0-201- 737192, Addison-
Wesley

Author Biography

Joe-Ming Cheng is a member of performance analysis team at Hitachi Global Storage Technology and is also a
part-time Associate professor at Silicon Valley University. He has worked at IBM Research and Development
laboratories for 25 years on algorithm, SOC, storage system, embedded system, and design automation tool
developments. He received an Outstanding Innovation Award and an Outstanding Achievement Award from
IBM. He has also worked on guidance system and air-borne CPU developments. Dr. Cheng received an M.S. in
Scientific (Biomedical Electronics) Instrumentation, UC Santa Barbara, 1975; and a Ph.D. in Computer
Engineering, UC Santa Cruz, 1996. He holds eight issued U.S. Patents.

